
From Commodore 64
to the Cloud

Lessons from 30 years of programming

Early 1980s

• Dick Smith Wizzard

• Commodore 64

• BASIC, peek/poke, machine
code, assembly, graphics,
games, electronic music,
compilers.

Lesson - Fun!
Tell your kids to program games in JavaScript with

HTML5/Canvas/WebGL
but ensure they understand that JavaScript is a low-level

assembly language of modern machines

Late 1980s / Early 1990s
• QUT

• Modula-2 > Pascal

• VAX/VMS DCL

• Unix & C

• Gardens Point Beers
Club

Lesson - Modules are
important

Modula-2 modules are simple but useful. Sooo much
better than C “header files” and preprocessor directives!

Lesson
Beer kills brain cells and lowers grades :)

Early 2000s
Python
Ruby

Smalltalk
Scheme

Common Lisp
Scheme

Dylan

Lesson - Macros
Macros are very useful for building extensible languages

Lesson -
Continuations

Scheme’s first-class continuations tickle your brain

TODO: Read Oleg on why delimited continuations are the thing

Mid 2000s
Xavier Leroy on compilers, Caml Light, Caml, Objective

Caml, OCaml

Lesson - High-level
Programming Languages

can be very efficient
i.e. OCaml is fast

but nag them about multicore ;)

Lesson - Pattern
Matching

Algebraic datatypes are great for compilers

Lesson - Macros in ML
family languages

camlp4 shows that macros aren’t just for Lispers

Lesson - Better
Modules

Modula-2 modules are great and simple. ML modules
have yet to be improved upon (but check out MixML).

Late 2000s
Haskell, Laziness, Template Haskell

Lesson - Laziness for
Modularity

John Hughes on “Why FP” is “Why Laziness”

Lesson - ad-hoc
overloading

Can use type classes for CLOS style ad-hoc overloading

Early 2010s
• Proofs are programs
• Coq, Agda, Epigram, Idris,

Cayenne, Ur
• Inductive datatypes
• Dependent types
• Module Systems

Lesson - The future of
programming is

dependently typed
• No longer need to statically analyse (aka infer or guess) the properties of your

programs. Instead state them.
• TDD: Test Driven Development → Type Driven Development.
• Manuel Chakravarty calls for Property Driven Development. Yes, that would be

mathematical properties.

Cloud
(aka “Cloud”)

i.e. Distributed Systems, Software Defined Infrastructure

Lesson - Reduce
network hops

• A key lesson from distributed computing.
• Also applies to optimising the user-space to kernel-space interactions.

Consider how the c10k problem is solved with libevent, libuv, NIO/NIO.2,
over epoll, kqueue, AIO etc. This kind of efficient I/O system is baked into
the runtime systems of Erlang, Haskell (via the Glorious GHC), Go, Rust,
Java, Scala ε ̷Node.js.

• Single address-space Operating Systems help solve a similar problem
when switching between threads/processes after a time-slice.

• L4 microkernel implements efficient inter-process message passing using
hardware memory remapping techniques.

• Operating Systems as libraries (aka exokernels):
• Mirage is OCaml on virtual metal
• HaLVM is Haskell (via the Glorious GHC) on virtual metal

Lesson - Everything
fails, deal with it!

… and everything will be fine 😃

These may help:

• replicas and redundancy
• app containers and PaaS, Docker, Kubernetes
• Raft, Zookeeper, etcd
• Erlang OTP

Questions?

